Advertisements
Advertisements
प्रश्न
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
उत्तर
Given:
nth term of the A.P. 9, 7, 5... is the same as the nth term of the A.P. 15, 12, 9...
\[\text { Considering } 9, 7, 5...\]
\[a = 9, d = \left( 7 - 9 \right) = - 2\]
\[ n^{th} \text { term } = 9 + (n - 1)( - 2) \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ = 9 - 2n + 2\]
\[ = 11 - 2n . . . (i)\]
\[\text { Considering } 15, 12, 9, ...\]
\[a = 15, d = \left( 12 - 15 \right) = - 3\]
\[ n^{th} \text { term } = 15 + (n - 1)( - 3) \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ = 15 - 3n + 3\]
\[ = 18 - 3n . . . (ii)\]
Equating (i) and (ii), we get:
\[11 - 2n = 18 - 3n\]
\[ \Rightarrow n = 7\]
Thus, 7th terms of both the A.P.s are the same.
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Find:
10th term of the A.P. 1, 4, 7, 10, ...
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______