मराठी

Find the Sum of All Integers Between 50 and 500 Which Are Divisible by 7. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of all integers between 50 and 500 which are divisible by 7.

उत्तर

The integers between 50 and 500 that are divisible by 7 are:
56, 63...497
Here, we have:

\[a = 56\]

\[d = 7 \]

\[ a_n = 497\]

\[ \Rightarrow 56 + (n - 1)7 = 497\]

\[ \Rightarrow 7n - 7 = 441\]

\[ \Rightarrow 7n = 448\]

\[ \Rightarrow n = 64\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow S_{64} = \frac{64}{2}\left[ 2 \times 56 + (64 - 1)7 \right]\]

\[ \Rightarrow S_{64} = 32\left[ 2 \times 56 + 63 \times 7 \right]=17696\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 9 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Which term of the A.P. 3, 8, 13, ... is 248?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all odd numbers between 100 and 200.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×