मराठी

Find the Sum of Odd Integers from 1 to 2001. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of odd integers from 1 to 2001.

उत्तर

\[\text { The odd integers from 1 to 2001 are  }1, 3, 5 . . . . . 2001 . \]

\[\text { It is an AP with a = 1 and d = 2 } . \]

\[ a_n = 2001\]

\[ \Rightarrow 1 + (n - 1)2 = 2001\]

\[ \Rightarrow 2n - 2 = 2000\]

\[ \Rightarrow 2n = 2002\]

\[ \Rightarrow n = 1001\]

\[\text { Also }, S_{1001} = \frac{1001}{2}\left[ 2 \times 1 + \left( 1001 - 1 \right)2 \right]\]

\[ \Rightarrow S_{1001} = \frac{1001}{2}\left[ 2 \times 1 + \left( 1000 \right)2 \right]\]

\[ \Rightarrow S_{1001} = \frac{1001}{2} \times 2002 = 1002001\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 27 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Which term of the A.P. 4, 9, 14, ... is 254?


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


Find the sum of first n natural numbers.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×