हिंदी

Find the Sum of Odd Integers from 1 to 2001. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of odd integers from 1 to 2001.

उत्तर

\[\text { The odd integers from 1 to 2001 are  }1, 3, 5 . . . . . 2001 . \]

\[\text { It is an AP with a = 1 and d = 2 } . \]

\[ a_n = 2001\]

\[ \Rightarrow 1 + (n - 1)2 = 2001\]

\[ \Rightarrow 2n - 2 = 2000\]

\[ \Rightarrow 2n = 2002\]

\[ \Rightarrow n = 1001\]

\[\text { Also }, S_{1001} = \frac{1001}{2}\left[ 2 \times 1 + \left( 1001 - 1 \right)2 \right]\]

\[ \Rightarrow S_{1001} = \frac{1001}{2}\left[ 2 \times 1 + \left( 1000 \right)2 \right]\]

\[ \Rightarrow S_{1001} = \frac{1001}{2} \times 2002 = 1002001\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 27 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Find the sum of all integers between 100 and 550, which are divisible by 9.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n odd natural numbers.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×