हिंदी

Which Term of the Sequence 24, 23 1 4 , 22 1 2 , 21 3 4 ....... is the First Negative Term? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?

उत्तर

 24,

\[23\frac{1}{4,}22\frac{1}{2,}21\frac{3}{4}\]

This is an A.P.
Here, we have:
a = 24

\[d = \left( 23\frac{1}{4} - 24 \right) = $\left( - \frac{3}{4} \right)$\]

\[\text { Let the first negative term be } a_n . \]

\[\text { Then, we have }: \]

\[ a_n < 0\]

\[ \Rightarrow a + \left( n - 1 \right) d < 0\]

\[ \Rightarrow 24 + \left( n - 1 \right) \left( - \frac{3}{4} \right) < 0\]

\[ \Rightarrow 24 - \frac{3n}{4} + \frac{3}{4} < 0\]

\[ \Rightarrow 24 + \frac{3}{4} < \frac{3n}{4}\]

\[ \Rightarrow \frac{99}{4} < \frac{3n}{4}\]

\[ \Rightarrow 99 < 3n\]

\[ \Rightarrow n > 33\]

Thus, the 34th term is the first negative term of the given A.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 5.1 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 3, 8, 13, ... is 248?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×