हिंदी

If Sn Denotes the Sum of First N Terms of an A.P. < an > Such that S M S N = M 2 N 2 , Then a M a N = - Mathematics

Advertisements
Advertisements

प्रश्न

If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

विकल्प

  • \[\frac{2 m + 1}{2 n + 1}\]

  • \[\frac{2 m - 1}{2 n - 1}\]

  • \[\frac{m - 1}{n - 1}\]

  • \[\frac{m + 1}{n + 1}\]

MCQ

उत्तर

\[\frac{2 m - 1}{2 n - 1}\]

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}\]

\[ \Rightarrow \frac{\frac{m}{2}\left\{ 2a + \left( m - 1 \right)d \right\}}{\frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}} = \frac{m^2}{n^2}\]

\[ \Rightarrow \frac{\left\{ 2a + \left( m - 1 \right)d \right\}}{\left\{ 2a + \left( n - 1 \right)d \right\}} = \frac{m}{n} \]

\[ \Rightarrow 2an + ndm - nd = 2am + nmd - md\]

\[ \Rightarrow 2an - 2am - nd + md = 0\]

\[ \Rightarrow 2a\left( n - m \right) - d\left( n - m \right) = 0\]

\[ \Rightarrow 2a\left( n - m \right) = d\left( n - m \right)\]

\[ \Rightarrow d = 2a . . . . . \left( 1 \right)\]

\[\text { Ratio of } \frac{a_m}{a_n} = \frac{a + \left( m - 1 \right)d}{a + \left( n - 1 \right)d}\]

\[ \Rightarrow \frac{a_m}{a_n} = \frac{a + \left( m - \right)2a}{a + \left( n - \right)2a}\text {  From } (1)\]

\[ = \frac{a + 2am - 2a}{a + 2an - 2a} \]

\[ = \frac{2am - a}{2an - a}\]

\[ = \frac{2m - 1}{2n - 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.9 | Q 6 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Is 302 a term of the A.P. 3, 8, 13, ...?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of first n natural numbers.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


Write the common difference of an A.P. whose nth term is xn + y.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×