हिंदी

The Sums of N Terms of Two Arithmetic Progressions Are in the Ratio 5n + 4 : 9n + 6. Find the Ratio of Their 18th Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.

उत्तर

\[\text { Let there be two A . P . s } . \]

\[\text { Let their first terms be } a_1 \text { and }a_2 \text { and their common differences be } d_1 \text { and } d_2  . \]

\[\text { Given }: \]

\[ \frac{5n + 4}{9n + 6} = \frac{\text { Sum of n terms in the first A . P } .}{\text { Sum of n terms in the second A . P } .}\]

\[ \Rightarrow \frac{5n + 4}{9n + 6} = \frac{2 a_1 + [(n - 1) d_1 ]}{2 a_2 + [(n - 1) d_2 ]}\]

\[\text { Putting n } = 2 \times 18 - 1 = 35 \text { in the above equation, we get }: \]

\[ \frac{5 \times 35 + 4}{9 \times 35 + 6} = \frac{2 a_1 + 34 d_1}{2 a_2 + 34 d_2}\]

\[ \Rightarrow \frac{179}{321} = \frac{a_1 + 17 d_1}{a_1 + 17 d_1}\]

\[ \Rightarrow \frac{179}{321} = \frac{\text { 18th term of the first A . P } .}{\text { 18th term of the second A . P } .}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 33 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Which term of the A.P. 84, 80, 76, ... is 0?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Find the sum of all odd numbers between 100 and 200.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


Find the sum of odd integers from 1 to 2001.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the sum of first n odd natural numbers.


Write the sum of first n even natural numbers.


If m th term of an A.P. is n and nth term is m, then write its pth term.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×