मराठी

The Sums of N Terms of Two Arithmetic Progressions Are in the Ratio 5n + 4 : 9n + 6. Find the Ratio of Their 18th Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.

उत्तर

\[\text { Let there be two A . P . s } . \]

\[\text { Let their first terms be } a_1 \text { and }a_2 \text { and their common differences be } d_1 \text { and } d_2  . \]

\[\text { Given }: \]

\[ \frac{5n + 4}{9n + 6} = \frac{\text { Sum of n terms in the first A . P } .}{\text { Sum of n terms in the second A . P } .}\]

\[ \Rightarrow \frac{5n + 4}{9n + 6} = \frac{2 a_1 + [(n - 1) d_1 ]}{2 a_2 + [(n - 1) d_2 ]}\]

\[\text { Putting n } = 2 \times 18 - 1 = 35 \text { in the above equation, we get }: \]

\[ \frac{5 \times 35 + 4}{9 \times 35 + 6} = \frac{2 a_1 + 34 d_1}{2 a_2 + 34 d_2}\]

\[ \Rightarrow \frac{179}{321} = \frac{a_1 + 17 d_1}{a_1 + 17 d_1}\]

\[ \Rightarrow \frac{179}{321} = \frac{\text { 18th term of the first A . P } .}{\text { 18th term of the second A . P } .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 33 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Is 68 a term of the A.P. 7, 10, 13, ...?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all even integers between 101 and 999.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×