मराठी

Which Term of the Sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is Purely Imaginary? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?

उत्तर

12 + 8i, 11 + 6i, 10 + 4i...
This is an A.P.
Here, we have:
a = 12 + 8i

\[d = \left( 11 + 6i - 12 - 8i \right)\]

\[ = \left( - 1 - 2i \right)\]

\[\text { Let the imaginary term be } a_n = a + \left( n - 1 \right)d\]

\[ a_n = \left( 12 + 8i \right) + \left( n - 1 \right)\left( - 1 - 2i \right)\]

\[ = \left( 12 + 8i \right) + \left( - n + 1 - 2in + 2i \right)\]

\[ = 12 + 8i - n + 1 - 2in + 2i\]

\[ = \left( 13 - n \right) + \left( 8 - 2n + 2 \right)i\]

\[ = \left( 13 - n \right) + \left( 10 - 2n \right)i\]

\[ a_n\text {  has to be imaginary } . \]

\[ \therefore \left( 13 - n \right) = 0\]

\[ \Rightarrow n = 13\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 5.3 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Is 68 a term of the A.P. 7, 10, 13, ...?


Is 302 a term of the A.P. 3, 8, 13, ...?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


How many numbers of two digit are divisible by 3?


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all even integers between 101 and 999.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


Write the common difference of an A.P. whose nth term is xn + y.


Write the sum of first n even natural numbers.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×