Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
पर्याय
0
1
xyz
xa yb zc
उत्तर
1
\[\text{ a, b and c are in A . P }. \]
\[ \therefore 2b = a + c . . . . . . . . \left( i \right)\]
\[\text{ And, x, y and z are in G . P } . \]
\[ \therefore y^2 = xz\]
\[\text{ Now }, x^{b - c} y^{c - a} z^{a - b} \]
\[ = x^{b + a - 2b} y^{2b - a - a} z^{a - b} \left[ \text{ From } \left( i \right) \right]\]
\[ = x^{a - b} y^{2\left( b - a \right)} z^{a - b} \]
\[ = \left( xz \right)^{a - b} \left( xz \right)^{b - a} \left[ \text{ From } \left( ii \right), y^2 = xz \right]\]
\[ = \left( xz \right)^0 \]
\[ = 1\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Find the sum of all numbers between 200 and 400 which are divisible by 7.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of all odd numbers between 100 and 200.
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
Write the sum of first n odd natural numbers.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.