Advertisements
Advertisements
प्रश्न
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
उत्तर
Since a, b, c, d are in A.P.
Then A.M. > G.M.
For the first three terms.
Therefore, `b > sqrt(ac) ("Here" (a + c)/2 = b)`
Squaring, we get
b2 > ac ....(1)
Similarly, for the last three terms
A.M. > G.M.
`c > sqrt(bd) ("Here" (b + d)/2 = c)`
c2 > bd ....(2)
Multiplying (1) and (2), we get
b2 c2 > (ac) (bd)
⇒ bc > ad
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Find:
nth term of the A.P. 13, 8, 3, −2, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
How many numbers of two digit are divisible by 3?
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all integers between 50 and 500 which are divisible by 7.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If m th term of an A.P. is n and nth term is m, then write its pth term.
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.