Advertisements
Advertisements
प्रश्न
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
उत्तर
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Here, the series is an A.P. where we have the following:
\[a = (a - b )^2 \]
\[d = \left( a^2 + b^2 - (a - b )^2 \right) = 2ab\]
\[ a_n = {[(a + b)}^2 + 6ab]\]
\[ \Rightarrow (a - b )^2 + (n - 1)(2ab) = {[(a + b)}^2 + 6ab] \]
\[ \Rightarrow a^2 + b^2 - 2ab + 2abn - 2ab = [ a^2 + b^2 + 2ab + 6ab]\]
\[ \Rightarrow a^2 + b^2 - 4ab + 2abn = a^2 + b^2 + 8ab\]
\[ \Rightarrow 2abn = 12ab \]
\[ \Rightarrow n = 6\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_6 = \frac{6}{2}\left[ 2(a - b )^2 + \left( 6 - 1 \right) 2ab \right] \]
\[ = 3\left[ 2( a^2 + b^2 - 2ab) + 10ab \right]\]
\[ = 3\left[ 2 a^2 + 2 b^2 - 4ab + 10ab \right]\]
\[ = 3\left[ 2 a^2 + 2 b^2 + 6ab \right]\]
\[ = 6\left[ a^2 + b^2 + 3ab \right]\]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Write the common difference of an A.P. the sum of whose first n terms is
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.