Advertisements
Advertisements
प्रश्न
Which term of the A.P. 84, 80, 76, ... is 0?
उत्तर
84, 80, 76...
Here, we have:
a = 84
\[d = \left( 80 - 84 \right) = - 4\]
\[\text { Let }a_n = 0\]
\[ \Rightarrow a + (n - 1)d = 0\]
\[ \Rightarrow 84 + (n - 1)\left( - 4 \right) = 0\]
\[ \Rightarrow (n - 1)\left( - 4 \right) = - 84\]
\[ \Rightarrow (n - 1) = 21\]
\[ \Rightarrow n = 22\]
Hence, 0 is the 22nd term of the given A.P.
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Write the sum of first n odd natural numbers.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.