Advertisements
Advertisements
प्रश्न
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
उत्तर
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\] ... to n terms
\[\text { We have:} \]
\[ a = \frac{x - y}{x + y}, d = $\left( \frac{3x - 2y}{x + y} - \frac{x - y}{x + y} \right)$ = \left( \frac{2x - y}{x + y} \right)\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ = \frac{n}{2}\left[ 2\left( \frac{x - y}{x + y} \right) + (n - 1)\left( \frac{2x - y}{x + y} \right) \right]\]
\[ = \frac{n}{2(x + y)}\left[ (2x - 2y) + (2x - y)(n - 1) \right]\]
\[ = \frac{n}{2(x + y)}\left[ 2x - 2y - 2x + y + n(2x - y) \right]\]
\[ = \frac{n}{2(x + y)}\left[ n(2x - y) - y \right]\]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all odd numbers between 100 and 200.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all even integers between 101 and 999.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the common difference of an A.P. the sum of whose first n terms is
Write the sum of first n odd natural numbers.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.