Advertisements
Advertisements
प्रश्न
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
उत्तर
50, 46, 42 ... to 10 terms
\[\text { We have }: \]
\[ a = 50, d = \left( 46 - 50 \right) = - 4\]
\[n = 10\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ = \frac{10}{2}\left[ 2 \times 50 + (10 - 1)( - 4) \right]\]
\[ = 5\left[ 100 - 36 \right] = 320\]
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
Write the common difference of an A.P. the sum of whose first n terms is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.