हिंदी

If (M + 1)Th Term of an A.P. is Twice the (N + 1)Th Term, Prove that (3m + 1)Th Term is Twice the (M + N + 1)Th Term. - Mathematics

Advertisements
Advertisements

प्रश्न

If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.

उत्तर

Given:

\[a_{m + 1} = 2 a_{n + 1} \]

\[ \Rightarrow a + (m + 1 - 1)d = 2[a + (n + 1 - 1)d]\]

\[ \Rightarrow a + md = 2(a + nd)\]

\[ \Rightarrow a + md = 2a + 2nd\]

\[ \Rightarrow 0 = a + 2nd - md \]

\[ \Rightarrow nd = \frac{md - a}{2} . . . (i)\]

To prove:

\[a_{3m + 1} = 2 a_{m + n + 1} \]

\[\text { LHS: } a_{3m + 1} = a + (3m + 1 - 1)d\]

\[ \Rightarrow a_{3m + 1} = a + 3md\]

\[RHS: 2 a_{m + n + 1} = 2[a + (m + n + 1 - 1)d]\]

\[ \Rightarrow 2 a_{m + n + 1} = 2(a + md + nd)\]

\[ \Rightarrow 2 a_{m + n + 1} = 2\left[ a + md + \left( \frac{md - a}{2} \right) \right] \left( \text { From }(i) \right)\]

\[ \Rightarrow 2 a_{m + n + 1} = 2\left[ \frac{2a + 2md + md - a}{2} \right]\]

\[\Rightarrow 2 a_{m + n + 1} = 2\left[ \frac{a + 3md}{2} \right]\]

\[ \Rightarrow 2 a_{m + n + 1} = a + 3md\]

∴ LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 13 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all integers between 100 and 550, which are divisible by 9.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×