Advertisements
Advertisements
प्रश्न
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
उत्तर
It is given that the man counts Rs 180 per minute for half an hour.
∴ Sum of money the man counts in 30 minutes = Rs 180
\[\times\] 30 = Rs 5400
Total money counted by the man = Rs 10710
∴ Money left for counting after 30 minutes = Rs (10710 − 5400) = Rs 5310
It is given that after 30 minutes, he counts at the rate of Rs 3 less every minute than the preceding minute.
Therefore, it would be an A.P. where a = 177 and d = −3.
Let the time taken to count Rs 5310 be n minutes.
\[5310 = \frac{n}{2}\left[ 2 \times 177 + \left( n - 1 \right) \times - 3 \right]\]
\[ \Rightarrow 10620 = 354 n - 3 n^2 + 3n\]
\[ \Rightarrow 3 n^2 - 357n + 10620 = 0\]
\[ \Rightarrow n^2 - 119n + 3540 = 0\]
\[ \Rightarrow n^2 - 59n - 60n + 3540 = 0\]
\[ \Rightarrow n\left( n - 59 \right) - 60\left( n - 59 \right) = 0\]
\[ \Rightarrow \left( n - 59 \right)\left( n - 60 \right) = 0\]
\[ \therefore n = 59 \text { or } 60\]
Thus, the time taken to count Rs 5310 would be 59 minutes or 60 minutes.
Hence, the total time taken to count Rs 10710 would be (30 + 59) minutes or (30 + 60) minutes, i.e. 89 minutes or 90 minutes, respectively.
APPEARS IN
संबंधित प्रश्न
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of all even integers between 101 and 999.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Write the common difference of an A.P. whose nth term is xn + y.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.