Advertisements
Advertisements
प्रश्न
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
उत्तर
Given:
< an > is an A.P.
\[\frac{a_4}{a_7} = \frac{2}{3}\]
\[ \Rightarrow \frac{a + \left( 4 - 1 \right)d}{a + \left( 7 - 1 \right)d} = \frac{2}{3} \]
\[ \Rightarrow \frac{a + 3d}{a + 6d} = \frac{2}{3}\]
\[ \Rightarrow 3(a + 3d) = 2(a + 6d) \]
\[ \Rightarrow 3a + 9d = 2a + 12d\]
\[ \Rightarrow a = 3d . . . . (i)\]
\[\therefore \frac{a_6}{a_8} = \frac{a + \left( 6 - 1 \right)d}{a + \left( 8 - 1 \right)d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{a + 5d}{a + 7d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{3d + 5d}{3d + 7d} \left( \text { From }(i) \right)\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{8d}{10d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{4d}{5d} = \frac{4}{5}\]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 4, 9, 14, ... is 254?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all even integers between 101 and 999.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Write the common difference of an A.P. whose nth term is xn + y.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.