हिंदी

Which Term of the A.P. 3, 8, 13, ... is 248? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the A.P. 3, 8, 13, ... is 248?

उत्तर

 3, 8, 13...
Here, we have:
a = 3

\[d = \left( 8 - 3 \right) = 5\]

\[\text { Let } a_n = 248\]

\[ \Rightarrow a + \left( n - 1 \right)d = 248\]

\[ \Rightarrow 3 + \left( n - 1 \right)5 = 248\]

\[ \Rightarrow \left( n - 1 \right)5 = 245\]

\[ \Rightarrow n - 1 = 49\]

\[ \Rightarrow n = 50\]

Hence, 248 is the 50th term of the given A.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 3.1 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Which term of the A.P. 84, 80, 76, ... is 0?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


How many numbers of two digit are divisible by 3?


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×