English

Which Term of the A.P. 3, 8, 13, ... is 248? - Mathematics

Advertisements
Advertisements

Question

Which term of the A.P. 3, 8, 13, ... is 248?

Solution

 3, 8, 13...
Here, we have:
a = 3

\[d = \left( 8 - 3 \right) = 5\]

\[\text { Let } a_n = 248\]

\[ \Rightarrow a + \left( n - 1 \right)d = 248\]

\[ \Rightarrow 3 + \left( n - 1 \right)5 = 248\]

\[ \Rightarrow \left( n - 1 \right)5 = 245\]

\[ \Rightarrow n - 1 = 49\]

\[ \Rightarrow n = 50\]

Hence, 248 is the 50th term of the given A.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 3.1 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of first n odd natural numbers.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of odd integers from 1 to 2001.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


Write the sum of first n even natural numbers.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×