English

Which Term of the Sequence 24, 23 1 4 , 22 1 2 , 21 3 4 ....... is the First Negative Term? - Mathematics

Advertisements
Advertisements

Question

Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?

Solution

 24,

\[23\frac{1}{4,}22\frac{1}{2,}21\frac{3}{4}\]

This is an A.P.
Here, we have:
a = 24

\[d = \left( 23\frac{1}{4} - 24 \right) = $\left( - \frac{3}{4} \right)$\]

\[\text { Let the first negative term be } a_n . \]

\[\text { Then, we have }: \]

\[ a_n < 0\]

\[ \Rightarrow a + \left( n - 1 \right) d < 0\]

\[ \Rightarrow 24 + \left( n - 1 \right) \left( - \frac{3}{4} \right) < 0\]

\[ \Rightarrow 24 - \frac{3n}{4} + \frac{3}{4} < 0\]

\[ \Rightarrow 24 + \frac{3}{4} < \frac{3n}{4}\]

\[ \Rightarrow \frac{99}{4} < \frac{3n}{4}\]

\[ \Rightarrow 99 < 3n\]

\[ \Rightarrow n > 33\]

Thus, the 34th term is the first negative term of the given A.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 5.1 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Find the sum of all numbers between 200 and 400 which are divisible by 7.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×