Advertisements
Advertisements
Question
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Solution
\[\text { We have: }\]
\[ 3\sqrt{2} - \sqrt{2} = 2\sqrt{2}\]
\[5\sqrt{2} - 3\sqrt{2} = 2\sqrt{2}\]
\[7\sqrt{2} - 5\sqrt{2} = 2\sqrt{2}\]
\[\text { Thus, the sequence is an A . P . with the common difference being } (2\sqrt{2}) . \]
\[\text { The next three terms are as follows } : \]
\[7\sqrt{2} + 2\sqrt{2} = 9\sqrt{2}\]
\[9\sqrt{2} + 2\sqrt{2} = 11\sqrt{2}\]
\[11\sqrt{2} + 2\sqrt{2} = 13\sqrt{2}\]
APPEARS IN
RELATED QUESTIONS
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of first n odd natural numbers.
Find the sum of all integers between 100 and 550, which are divisible by 9.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.