English

How Many Terms Are There in the A.P. − 1 , − 5 6 , − 2 3 , − 1 2 , . . . , 10 3 ? - Mathematics

Advertisements
Advertisements

Question

How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 

Solution

\[- 1, - \frac{5}{6}, - \frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}\]

Here, we have:
a  =\[- 1\]

\[d = \left( \frac{- 5}{6} - \left( - 1 \right) \right) = \left( 1 - \frac{5}{6} \right) = \frac{1}{6}\]

\[ a_n = \frac{10}{3}\]

Let there be n terms in the given A.P.

\[\text { Also }, a_n = a + \left( n - 1 \right)d\]

\[ \Rightarrow \frac{10}{3} = - 1 + \left( n - 1 \right)\frac{1}{6}\]

\[ \Rightarrow \frac{13}{3} = \left( n - 1 \right)\frac{1}{6}\]

\[ \Rightarrow 26 = \left( n - 1 \right)\]

\[ \Rightarrow 27 = n\]

Thus, there are 27 terms in the given A.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 6.2 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 3, 8, 13, ... is 248?


Is 68 a term of the A.P. 7, 10, 13, ...?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of all even integers between 101 and 999.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the sum of first n even natural numbers.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×