Advertisements
Advertisements
Question
If m th term of an A.P. is n and nth term is m, then write its pth term.
Solution
Given:
\[a_m = n\]
\[ \Rightarrow a + \left( m - 1 \right)d = n . . . . \left( 1 \right)\]
\[ a_n = m\]
\[ \Rightarrow a + (n - 1)d = m . . . . \left( 2 \right)\]
Solving equations
\[\left( 1 \right) \text { and } \left( 2 \right)\],we get: d = \[- 1\] a = n+m \[- 1\]
p th term:
\[a_p = a + \left( p - 1 \right)d\]
\[ = n + m - 1 + \left( p - 1 \right)\left( - 1 \right)\]
\[ = n + m - p\]
Hence, the pth term is n + m \[-\] p.
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If Sn denotes the sum of first n terms of an A.P. < an > such that
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.