Advertisements
Advertisements
Question
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Solution
We know that,
the sum of the interior angles of a polygon with 3 sides, a1 = 180°,
the sum of the interior angles of a polygon with 4 sides, a2 = 360°,
the sum of the interior angles of a polygon with 5 sides, a3 = 540°,
\[\text{ As, } a_2 - a_1 = 360^\circ - 180^\circ = 180^\circ \text { and } a_3 - a_2 = 540^\circ - 360^\circ= 180^\circ\]
\[\text { i . e } . a_2 - a_1 = a_3 - a_2 \]
\[\text { So }, a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]
\[\text { Also, } a = 180^\circ \text { and }d = 180^\circ\]
\[\text { Since, the sum of the interior angles of a 3 sided polygon } = a\]
\[\text { So, the sum of the interior angles of a 21 sided polygon }= a_{19} \]
\[\text { Now, } \]
\[ a_{19} = a + \left( 19 - 1 \right)d\]
\[ = 180^\circ + 18 \times 180^\circ\]
\[ = 180^\circ + 3240^\circ \]
\[ = 3420^\circ\]
So, the sum of the interior angles for a 21 sided polygon is 3420°.
APPEARS IN
RELATED QUESTIONS
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 4, 9, 14, ... is 254?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all even integers between 101 and 999.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of odd integers from 1 to 2001.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the common difference of an A.P. whose nth term is xn + y.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.