Advertisements
Advertisements
प्रश्न
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
उत्तर
We know that,
the sum of the interior angles of a polygon with 3 sides, a1 = 180°,
the sum of the interior angles of a polygon with 4 sides, a2 = 360°,
the sum of the interior angles of a polygon with 5 sides, a3 = 540°,
\[\text{ As, } a_2 - a_1 = 360^\circ - 180^\circ = 180^\circ \text { and } a_3 - a_2 = 540^\circ - 360^\circ= 180^\circ\]
\[\text { i . e } . a_2 - a_1 = a_3 - a_2 \]
\[\text { So }, a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]
\[\text { Also, } a = 180^\circ \text { and }d = 180^\circ\]
\[\text { Since, the sum of the interior angles of a 3 sided polygon } = a\]
\[\text { So, the sum of the interior angles of a 21 sided polygon }= a_{19} \]
\[\text { Now, } \]
\[ a_{19} = a + \left( 19 - 1 \right)d\]
\[ = 180^\circ + 18 \times 180^\circ\]
\[ = 180^\circ + 3240^\circ \]
\[ = 3420^\circ\]
So, the sum of the interior angles for a 21 sided polygon is 3420°.
APPEARS IN
संबंधित प्रश्न
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of first n odd natural numbers.
Find the sum of all even integers between 101 and 999.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Write the sum of first n odd natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.