हिंदी

A Carpenter Was Hired to Build 192 Window Frames. the First Day He Made Five Frames and Each Day Thereafter He Made Two More Frames than He Made the Day Before. How Many Days Did It Take Him to - Mathematics

Advertisements
Advertisements

प्रश्न

A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 

उत्तर

\[\text { We have, } \]

\[S = 192, a = 5, d = 2\]

\[\text { Now, } \]

\[ S_n = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2 \times 5 + \left( n - 1 \right) \times 2 \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 10 + 2n - 2 \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2n + 8 \right] = 192\]

\[ \Rightarrow n\left( n + 4 \right) = 192\]

\[ \Rightarrow n^2 + 4n = 192\]

\[ \Rightarrow n^2 - 12n + 16n - 192 = 0\]

\[ \Rightarrow n\left( n - 12 \right) + 16\left( n - 12 \right) = 0\]

\[ \Rightarrow \left( n - 12 \right)\left( n + 16 \right) = 0\]

\[ \Rightarrow \left( n - 12 \right) = 0 \text { or } \left( n + 16 \right) = 0\]

\[ \Rightarrow n = 12 or n = - 16\]

\[ \because \text { n cannot be negative } . \]

\[ \therefore n = 12\]

So, the carpenter takes 12 days to finish the job.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.7 | Q 12 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Which term of the A.P. 84, 80, 76, ... is 0?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of all odd numbers between 100 and 200.


Find the sum of all even integers between 101 and 999.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


Write the common difference of an A.P. whose nth term is xn + y.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×