हिंदी

Mark the Correct Alternative in the Following Question: If in an A.P., the Pth Term is Q and (P + Q)Th Term is Zero, Then the Qth Term is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is

विकल्प

  • \[-\]p

  • p

  • q 

  • p-q

MCQ

उत्तर

\[\text { As, } a_p = q\]

\[ \Rightarrow a + \left( p - 1 \right)d = q . . . . . \left( i \right)\]

\[\text { Also }, a_\left( p + q \right) = 0\]

\[ \Rightarrow a + \left( p + q - 1 \right)d = 0 . . . . . \left( ii \right)\]

\[\text { Subtracting } \left( i \right) \text { from } \left( ii \right), \text { we get }\]

\[a + \left( p + q - 1 \right)d - a - \left( p - 1 \right)d = 0 - q\]

\[ \Rightarrow \left( p + q - 1 - p + 1 \right)d = - q\]

\[ \Rightarrow qd = - q\]

\[ \Rightarrow d = \frac{- q}{q}\]

\[ \Rightarrow d = - 1\]

\[\text { Substituting } d = - 1 \text { in } \left( i \right), \text { we get }\]

\[a + \left( p - 1 \right) \times \left( - 1 \right) = q\]

\[ \Rightarrow a - p + 1 = q\]

\[ \Rightarrow a = p + q - 1\]

\[\text { Now }, \]

\[ a_q = a + \left( q - 1 \right)d\]

\[ = p + q - 1 + \left( q - 1 \right) \times \left( - 1 \right)\]

\[ = p + q - 1 - q + 1\]

\[ = p\]

Hence, the correct alternative is option (b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.9 | Q 21 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n natural numbers.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all integers between 100 and 550, which are divisible by 9.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If m th term of an A.P. is n and nth term is m, then write its pth term.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×