Advertisements
Advertisements
प्रश्न
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
उत्तर
Given: A piece of equipment cost a certain factory is 600,000
To find: Value of the equipment at the end of 10 years
It depreciates 15%, 13.5%, 12% in 1st, 2nd, 3rd year and so on.
This means the price of the equipment is depreciating in an A.P.
A.P. will be 15, 13.5, 12,…………………………up to 10 terms
Hence a = 15, d = 13.5 – 15 = –1.5
Formula used:
`S_n = n/2 {2a +(n-1)d}`
where a is first term, d is common difference and n is number of terms in an A.P.
Therefore,
Total percentage of depreciation in 10 years,
`S_10 =10/2{2xx15+(10-1)xx-1.5}`
⇒ S10 = 5(30+9× -1.5)
⇒ S10 = 5(30 -13.5 )
⇒ S10 = 5(16.5)
⇒ S10 = 82.5
Value of the equipment at the end of 10 years,
`= (100-"Depreciation"%)/100 xx "cost of equipment"`
`=(100-82.5)/100 xx 600000`
`= 175/10 xx 6000`
=175 × 600
= 105000
Hence, value of equipment at the end of 10 years is Rs. 105000
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 84, 80, 76, ... is 0?
Which term of the A.P. 4, 9, 14, ... is 254?
Is 68 a term of the A.P. 7, 10, 13, ...?
Is 302 a term of the A.P. 3, 8, 13, ...?
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of all odd numbers between 100 and 200.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.