Advertisements
Advertisements
प्रश्न
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
उत्तर
Let a be the first term and d be the common difference.
\[a_{12} = - 13\]
\[ \Rightarrow a + \left( 12 - 1 \right)d = - 13\]
\[ \Rightarrow a + 11d = - 13 . . . (i)\]
\[\text { Also, } S_4 = 24\]
\[ \Rightarrow \frac{4}{2}\left[ 2a + (4 - 1)d \right] = 24\]
\[ \Rightarrow 2\left( 2a + 3d \right) = 24\]
\[ \Rightarrow 2a + 3d = 12 . . . (ii) \]
\[\text { From (i) and (ii), we get }: \]
\[19d = - 38\]
\[ \Rightarrow d = - 2\]
\[\text { Putting the value of d in (i), we get }: \]
\[a + 11\left( - 2 \right) = - 13\]
\[ \Rightarrow a = 9\]
\[ S_{10} = \frac{10}{2}\left[ 2 \times 9 + (10 - 1)\left( - 2 \right) \right]\]
\[ \Rightarrow S_{10} = 5\left[ 18 + 9\left( - 2 \right) \right] = 0\]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of all even integers between 101 and 999.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.