हिंदी

The Sum of First 7 Terms of an A.P. is 10 and that of Next 7 Terms is 17. Find the Progression. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.

उत्तर

\[\text { We have: } \]

\[ S_7 = 10\]

\[ \Rightarrow \frac{7}{2}\left[ 2a + (7 - 1)d \right] = 10\]

\[ \Rightarrow \frac{7}{2}\left[ 2a + 6d \right] = 10\]

\[ \Rightarrow a + 3d = \frac{10}{7} . . . (i)\]

\[\text { Also, the sum of the next seven terms } = S_{14} - S_7 = 17\]

\[ \Rightarrow \frac{14}{2}\left[ 2a + \left( 14 - 1 \right)d \right] - \frac{7}{2}\left[ 2a + (7 - 1)d \right] = 17\]

\[ \Rightarrow 7\left[ 2a + 13d \right]\]

\[ - \frac{7}{2}\left[ 2a + 6d \right] = 17\]

\[ \Rightarrow 14a + 91d - 7a - 21d = 17\]

\[ \Rightarrow 7a + 70d = 17\]

\[ \Rightarrow a + 10d = \frac{17}{7} . . . (ii)\]

\[\text { From (i) and (ii), we get }: \]

\[\frac{10}{7} - 3d = \frac{17}{7} - 10d\]

\[ \Rightarrow 7d = 1\]

\[ \Rightarrow d = \frac{1}{7}\]

\[\text { Putting the value in (i), we get: } \]

\[a + 3d = \frac{10}{7}\]

\[ \Rightarrow a + \frac{3}{7} = \frac{10}{7}\]

\[ \Rightarrow a = 1\]

\[ \therefore a = 1, d = \frac{1}{7}\]

The progression thus formed is

\[1, \frac{8}{7}, \frac{9}{7}, \frac{10}{7} . . .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 17 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of first n odd natural numbers.


Find the sum of all integers between 100 and 550, which are divisible by 9.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×