हिंदी

A Man Accepts a Position with an Initial Salary of ₹5200 per Month. It is Understood that He Will Receive an Automatic Increase of ₹320 in the Very Next Month and Each Month Thereafter. (I) Fi - Mathematics

Advertisements
Advertisements

प्रश्न

A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?

उत्तर

We have,
the initial salary, a1 = ₹5200,
the salary of the second month, a2 = ₹5200 + ₹320 = ₹5520,
the salary of the third month, a3 = ₹5520 + ₹320 = ₹5840,

\[\text { As, } a_2 - a_1 = 5520 - 5200 = 320 \text { and } a_3 - a_2 = 5840 - 5520 = 320\]

\[i . e . a_2 - a_1 = a_3 - a_2 \]

\[\text { So, } a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]

\[\text { Also, } a = 5200, d = 320\]

\[\left( i \right) a_{10} = a + \left( 10 - 1 \right)d\]

\[ = 5200 + 9 \times 320\]

\[ = 5200 + 2880\]

\[ = 8080\]

\[\text { So, the salary of the man for the tenth month is } ₹ 8, 080 . \]

\[\left( ii \right) S_{12} = \frac{12}{2}\left[ 2a + \left( 12 - 1 \right)d \right]\]

\[ = 6\left( 2 \times 5200 + 11 \times 320 \right)\]

\[ = 6\left( 10400 + 3520 \right)\]

\[ = 6 \times 13920\]

\[ = 83520\]

\[\text { So, the total earnings of the man during the first year is } ₹ 83, 520 .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.7 | Q 15 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Is 68 a term of the A.P. 7, 10, 13, ...?


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n odd natural numbers.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×