हिंदी

The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference. - Mathematics

Advertisements
Advertisements

प्रश्न

The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.

योग

उत्तर

Let the number of terms of the given A.P. be n, first term be a and the common difference be d.

First term a = 2

Last term l = 50

Sum of all the terms Sn = 442

We know that,

Sum of the n terms Sn = `n/2(a + l)`

`=> 442 = n/2 (2 + 50)`

`=> 442 = n(26)`

`=> n = 442/26`

⇒ n = 17

Also,

l = a + (n - 1)d

Therefore,

On substituting the values of a, l and n, we get,

50 = 2 + (17 - 1)d

⇒ 50 = 2 + 16d

⇒ 50 - 2 = 16d

⇒ 48 = 16d

⇒ `48/16` = d

⇒ d = 3

Hence, the common difference of the given A.P. is 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 19 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the A.P. 4, 9, 14, ... is 254?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of first n natural numbers.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Find the sum of odd integers from 1 to 2001.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×