हिंदी

If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an - Mathematics

Advertisements
Advertisements

प्रश्न

If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 

योग

उत्तर

We have sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an)

= `sin d[1/(sina_1 sina_2) + 1/(sina_2 sina_3) + ... + 1/(sina_(n - 1) sina_n)]`

= `(sin(a_2 - a_1))/(sina_1 sina_2) + (sin(a_3 - a_2))/(sina_2 sina_3) + ... + (sin(a_n - a_(n - 1)))/(sina_(n - 1) sina_n)`

= `(sina_2 cos a_1 - cosa_2 sina_1)/(sina_1 sina_2) + (sina_3 cosa_2 - cosa_3 sina_2)/(sina_2 sina_3) + ... + (sina_n cosa_(n - 1) - cosa_n sina_(n - 1))/(sina_(n - 1) sina_n)`

= (cot a1 – cot a2) + (cot a2 – cot a3) + ... + (cot an–1 – cot an)

= cot a1 – cot an 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Solved Examples [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Solved Examples | Q 10 | पृष्ठ १५५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of first n odd natural numbers.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×