Advertisements
Advertisements
प्रश्न
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
उत्तर
Given:
\[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P.
\[\text { By adding 1 to each term, we get }: \]
\[ a\left( \frac{1}{b} + \frac{1}{c} \right) + 1, b\left( \frac{1}{c} + \frac{1}{a} \right) + 1, c\left( \frac{1}{a} + \frac{1}{b} \right) + 1 \text { are in A . P } . \]
\[ \Rightarrow a\left( \frac{1}{b} + \frac{1}{c} + \frac{1}{a} \right), b\left( \frac{1}{c} + \frac{1}{a} + \frac{1}{b} \right), c\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \text { are in A . P } . \]
\[\text { Dividing all terms by } \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \text { we get }: \]
\[ \Rightarrow \text { a, b, c are in A . P } . \]
\[\text { Hence, proved } .\]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 4, 9, 14, ... is 254?
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.