Advertisements
Advertisements
Question
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Solution
Given:
\[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P.
\[\text { By adding 1 to each term, we get }: \]
\[ a\left( \frac{1}{b} + \frac{1}{c} \right) + 1, b\left( \frac{1}{c} + \frac{1}{a} \right) + 1, c\left( \frac{1}{a} + \frac{1}{b} \right) + 1 \text { are in A . P } . \]
\[ \Rightarrow a\left( \frac{1}{b} + \frac{1}{c} + \frac{1}{a} \right), b\left( \frac{1}{c} + \frac{1}{a} + \frac{1}{b} \right), c\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \text { are in A . P } . \]
\[\text { Dividing all terms by } \frac{1}{a} + \frac{1}{b} + \frac{1}{c}, \text { we get }: \]
\[ \Rightarrow \text { a, b, c are in A . P } . \]
\[\text { Hence, proved } .\]
APPEARS IN
RELATED QUESTIONS
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Is 302 a term of the A.P. 3, 8, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the sum of first n odd natural numbers.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.