Advertisements
Advertisements
Question
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
Solution
\[\text { Given } : a_n = n^2 - n + 1\]
\[\text { For } n = 1, a_1 = 1^2 - 1 + 1 \]
\[ = 1\]
\[\text { For } n = 2, a_2 = 2^2 - 2 + 1 \]
\[ = 3\]
\[\text { For n = 3, a_3 = 3^2 - 3 + 1 \]
\[ = 7\]
\[\text { For } n = 4, a_4 = 4^2 - 4 + 1 \]
\[ = 13\]
\[\text { For }n = 5, a_5 = 5^2 - 5 + 1 \]
\[ = 21\]
Thus, the first five terms of the sequence are 1, 3, 7, 13, 21.
APPEARS IN
RELATED QUESTIONS
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Is 302 a term of the A.P. 3, 8, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of first n natural numbers.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. whose nth term is xn + y.
Write the common difference of an A.P. the sum of whose first n terms is
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to