English

Find the Sum of All Two Digit Numbers Which When Divided by 4, Yields 1 as Remainder. - Mathematics

Advertisements
Advertisements

Question

Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.

Solution

The two-digit numbers which when divided by 4 yield 1 as remainder are 13, 17....97.

\[\therefore a = 13, d = 4, a_n = 97\]

\[ \therefore a_n = a + (n - 1)d\]

\[ \Rightarrow 97 = 13 + (n - 1)4\]

\[ \Rightarrow 84 = 4n - 4\]

\[ \Rightarrow 88 = 4n\]

\[ \Rightarrow 22 = n . . . \left( 1 \right)\]

\[\text { Also }, S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ S_{22} = \frac{22}{2}\left[ 2 \times 13 + (22 - 1) \times 4 \right] (\text { From }\left( 1 \right))\]

\[ \Rightarrow S_{22} = 11\left[ 110 \right] = 1210\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 25 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Which term of the A.P. 84, 80, 76, ... is 0?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


How many numbers of two digit are divisible by 3?


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n odd natural numbers.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×