Advertisements
Advertisements
Question
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
Solution
Let a be the first term and d be the common difference. Then,
\[a_4 + a_8 = 24\]
\[ \Rightarrow a + \left( 4 - 1 \right)d + a + \left( 8 - 1 \right)d = 24\]
\[ \Rightarrow a + 3d + a + 7d = 24\]
\[ \Rightarrow 2a + 10d = 24 \]
\[ \Rightarrow a + 5d = 12 . . . (i)\]
\[\text { Also }, a_6 + a_{10} = 34\]
\[ \Rightarrow a + \left( 6 - 1 \right)d + a + \left( 10 - 1 \right)d = 34\]
\[ \Rightarrow a + 5d + a + 9d = 34\]
\[ \Rightarrow 2a + 14d = 34\]
\[ \Rightarrow a + 7d = 17 . . . (ii)\]
\[\text { Solving (i) and (ii), we get }: \]
\[2d = 5\]
\[ \Rightarrow d = \frac{5}{2}\]
\[\text { Substituing the value in (i), we get }: \]
\[a + 5\left( \frac{5}{2} \right) = 12\]
\[ \Rightarrow a + \frac{25}{2} = 12\]
\[ \Rightarrow a = \frac{- 1}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the A.P. 4, 9, 14, ... is 254?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
How many numbers of two digit are divisible by 3?
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
Write the common difference of an A.P. whose nth term is xn + y.
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n odd natural numbers.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.