English

Which Term of the A.P. 4, 9, 14, ... is 254? - Mathematics

Advertisements
Advertisements

Question

Which term of the A.P. 4, 9, 14, ... is 254?

Solution

 4, 9, 14...
Here, we have:
a = 4

\[d = \left( 9 - 4 \right) = 5\]

\[\text { Let } a_n = 254\]

\[ \Rightarrow a + \left( n - 1 \right) d = 254\]

\[ \Rightarrow 4 + \left( n - 1 \right) 5 = 254\]

\[ \Rightarrow \left( n - 1 \right) 5 = 250\]

\[ \Rightarrow \left( n - 1 \right) = 50\]

\[ \Rightarrow n = 51\]

Hence, 254 is the 51st term of the given A.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 3.3 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all even integers between 101 and 999.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×