Advertisements
Advertisements
Question
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
Solution
1 + 4 + 7 + 10 + ... + x = 590
Here, a = 1, d = 3,
\[\text { We know: } \]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow 590 = \frac{n}{2}\left[ 2 \times 1 + (n - 1) \times \left( 3 \right) \right]\]
\[ \Rightarrow 590 \times 2 = n\left[ 2 + 3n - 3 \right]\]
\[ \Rightarrow 1180 = n\left( 3n - 1 \right)\]
\[ \Rightarrow 1180 = 3 n^2 - n\]
\[ \Rightarrow 3 n^2 - n - 1180 = 0\]
\[\text { By quadratic formula: } \]
\[ n = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\]
\[\text { Substituting a = 3, b = - 1 and c = - 1180, we get }: \]
\[ \Rightarrow n = \frac{1 \pm \sqrt{\left( 1 \right)^2 + 4 \times 3 \times 1180}}{2 \times 3} = \frac{- 118}{6}, 20\]
\[ \Rightarrow n = 20, \text { as } n \neq \frac{- 118}{6}\]
\[ \therefore a_n = x = a + (n - 1)d\]
\[ \Rightarrow x = 1 + (20 - 1)(3)\]
\[ \Rightarrow x = 1 + 60 - 3 = 58\]
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Is 302 a term of the A.P. 3, 8, 13, ...?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
How many numbers of two digit are divisible by 3?
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of first n natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
Write the common difference of an A.P. whose nth term is xn + y.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.