Advertisements
Advertisements
Question
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Solution
\[\text { Let the three numbers be } (a - d), a, (a + d) . \]
\[\text { Sum } = 24\]
\[ \Rightarrow (a - d) + a + (a + d) = 24\]
\[ \Rightarrow 3a = 24\]
\[ \Rightarrow a = 8 . . . (i)\]
\[\text { Product } = a(a - d)(a + d) = 440\]
\[ \Rightarrow a( a^2 - d^2 ) = 440\]
\[ \Rightarrow 8(64 - d^2 ) = 440 \left(\text { Form } (i) \right)\]
\[ \Rightarrow (64 - d^2 ) = 55\]
\[ \Rightarrow d^2 = 9\]
\[ \Rightarrow d = \pm 3\]
\[\text { With a = 8, d = 3, we have }: \]
\[5, 8, 11\]
\[\text { With a = 8, d = - 3, we have: } \]
\[11, 8, 5\]
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
Write the common difference of an A.P. the sum of whose first n terms is
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.