English

If the Sum of N Terms of an A.P. is Np + 1 2 N (N − 1) Q, Where P and Q Are Constants, Find the Common Difference. - Mathematics

Advertisements
Advertisements

Question

If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.

Solution

\[\text { We have: } \]

\[ S_n = nP + \frac{1}{2}n(n - 1)Q\]

\[\text { For } n = 1, S_1 = P + 0 = P\]

\[\text { For } n = 2, S_2 = 2P + Q \]

\[\text { Also }, a_1 = S_1 = P, \]

\[ a_2 = S_2 - S_1 \]

\[ = 2P + Q - P = P + Q\]

\[ \therefore d = a_2 - a_1 = P + Q - P = Q \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 32 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of odd integers from 1 to 2001.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 3, 8, 13, ... is 248?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of first n odd natural numbers.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×