Advertisements
Advertisements
Question
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
Options
4n − 3
3 n − 4
4 n + 3
3 n + 4
Solution
4n +3
\[S_n = 2 n^2 + 5n\]
\[ S_1 = 2 . 1^2 + 5 . 1 = 7\]
\[ \therefore a_1 = 7\]
\[ S_n = 2 . 2^2 + 5 . 2 = 18\]
\[ \therefore a_1 + a_2 = 18\]
\[ \Rightarrow a_2 = 11\]
\[\text { Common difference, } d = 11 - 7 = 4\]
\[ a_n = a + \left( n - 1 \right)d\]
\[ = 7 + \left( n - 1 \right)4\]
\[ = 4n + 3\]
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Which term of the A.P. 3, 8, 13, ... is 248?
Is 68 a term of the A.P. 7, 10, 13, ...?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
Write the sum of first n even natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______