English

In N A.M.'S Are Introduced Between 3 and 17 Such that the Ratio of the Last Mean to the First Mean is 3 : 1, Then the Value of N is - Mathematics

Advertisements
Advertisements

Question

In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is

Options

  • 6

  • 8

  • 4

  •  none of these.

MCQ

Solution

6

Let 

\[A_1 , A_2 , A_3 , A_4 . . . . A_n\] be the n arithmetic means between 3 and 17.
Let d be the common difference of the A.P. 3,

\[A_1 , A_2 , A_3 , A_4 , . . . . A_n\] and 17.
Then, we have:

d = \[\frac{17 - 3}{n + 1}\] = \[\frac{14}{n + 1}\]

Now, 

\[A_1\] = 3 + d = 3 + \[\frac{14}{n + 1}\] = \[\frac{3n + 17}{n + 1}\]

And, 

\[A_n = 3 + nd = 3 + n\left( \frac{14}{n + 1} \right) = \frac{17n + 3}{n + 1}\]

\[\therefore \frac{A_n}{A_1} = \frac{3}{1}\]

\[ \Rightarrow \frac{\left( \frac{17n + 3}{n + 1} \right)}{\left( \frac{3n + 17}{n + 1} \right)} = \frac{3}{1}\]

\[ \Rightarrow \frac{17n + 3}{3n + 17} = \frac{3}{1}\]

\[ \Rightarrow 17n + 3 = 9n + 51\]

\[ \Rightarrow 8n = 48\]

\[ \Rightarrow n = 6\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.9 | Q 5 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Which term of the A.P. 84, 80, 76, ... is 0?


Is 68 a term of the A.P. 7, 10, 13, ...?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of all odd numbers between 100 and 200.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×