Advertisements
Advertisements
प्रश्न
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
उत्तर
\[\text {As, x, y and z are in A . P } . \]
\[\text { So, y } = \frac{x + z}{2} . . . . . \left( i \right)\]
\[\text { Now }, \]
\[\left( x^2 + xy + y^2 \right) + \left( y^2 + yz + z^2 \right)\]
\[ = x^2 + z^2 + 2 y^2 + xy + yz\]
\[ = x^2 + z^2 + 2 y^2 + y\left( x + z \right)\]
\[ = x^2 + z^2 + 2 \left( \frac{x + z}{2} \right)^2 + \left( \frac{x + z}{2} \right)\left( x + z \right) \left[ \text { Using } \left( i \right) \right]\]
\[ = x^2 + z^2 + 2\left( \frac{\left( x + z \right)^2}{4} \right) + \frac{\left( x + z \right)^2}{2}\]
\[ = x^2 + z^2 + \frac{\left( x + z \right)^2}{2} + \frac{\left( x + z \right)^2}{2}\]
\[ = x^2 + z^2 + \left( x + z \right)^2 \]
\[ = x^2 + z^2 + x^2 + 2xy + z^2 \]
\[ = 2 x^2 + 2xy + 2 z^2 \]
\[ = 2\left( x^2 + xy + z^2 \right)\]
\[\text { Since, } \left( x^2 + xy + y^2 \right) + \left( y^2 + yz + z^2 \right) = 2\left( x^2 + xy + z^2 \right)\]
\[\text { So, } \left( x^2 + xy + y^2 \right), \left( x^2 + xy + z^2 \right) \text { and } \left( y^2 + yz + z^2 \right) \text { are in A . P } .\]
Hence, x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P.
APPEARS IN
संबंधित प्रश्न
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of all odd numbers between 100 and 200.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
Write the common difference of an A.P. whose nth term is xn + y.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.