Advertisements
Advertisements
प्रश्न
Find the sum of all odd numbers between 100 and 200.
उत्तर
All the odd numbers between 100 and 200 are:
101, 103...199
Here, we have:
\[a = 101\]
\[d = 2\]
\[ a_n = 199\]
\[ \Rightarrow 101 + (n - 1) \times 2 = 199\]
\[ \Rightarrow 2n - 2 = 98\]
\[ \Rightarrow 2n = 100\]
\[ \Rightarrow n = 50\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{50} = \frac{50}{2}\left[ 2 \times 101 + (50 - 1)2 \right]\]
\[ \Rightarrow S_{50} = 25\left[ 202 + 98 \right]\]
\[\Rightarrow S_{50} = 7500\]
APPEARS IN
संबंधित प्रश्न
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Is 302 a term of the A.P. 3, 8, 13, ...?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all even integers between 101 and 999.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the sum of first n even natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.