Advertisements
Advertisements
प्रश्न
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
उत्तर
101 + 99 + 97 + ... + 47
Here, the series is an A.P. where we have the following:
\[a = 101\]
\[d = \left( 99 - 101 \right) = - 2\]
\[ a_n = 47\]
\[ \Rightarrow 101 + (n - 1)( - 2) = 47\]
\[ \Rightarrow 101 - 2n + 2 = 47\]
\[ \Rightarrow 2n - 2 = 54\]
\[ \Rightarrow 2n = 56\]
\[ \Rightarrow n = 28\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{28} = \frac{28}{2}\left[ 2 \times 101 + \left( 28 - 1 \right) \times ( - 2) \right]\]
\[ = \frac{28}{2}\left[ 2 \times 101 + 27 \times ( - 2) \right] \]
\[ = 2072\]
APPEARS IN
संबंधित प्रश्न
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of all odd numbers between 100 and 200.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
Write the sum of first n even natural numbers.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.