हिंदी

Find the Sum of the Following Serie: 101 + 99 + 97 + ... + 47 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following serie:

101 + 99 + 97 + ... + 47

उत्तर

101 + 99 + 97 + ... + 47
Here, the series is an A.P. where we have the following:

\[a = 101\]

\[d = \left( 99 - 101 \right) = - 2\]

\[ a_n = 47\]

\[ \Rightarrow 101 + (n - 1)( - 2) = 47\]

\[ \Rightarrow 101 - 2n + 2 = 47\]

\[ \Rightarrow 2n - 2 = 54\]

\[ \Rightarrow 2n = 56\]

\[ \Rightarrow n = 28\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow S_{28} = \frac{28}{2}\left[ 2 \times 101 + \left( 28 - 1 \right) \times ( - 2) \right]\]

\[ = \frac{28}{2}\left[ 2 \times 101 + 27 \times ( - 2) \right] \]

\[ = 2072\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 2.2 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all odd numbers between 100 and 200.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the sum of first n even natural numbers.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×