हिंदी

In a Cricket Team Tournament 16 Teams Participated. a Sum of ₹8000 is to Be Awarded Among Themselves as Prize Money. If the Last Place Team is Awarded ₹275 in Prize Money and the Award Increases by - Mathematics

Advertisements
Advertisements

प्रश्न

In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?

उत्तर

We have,
the total sum of prize money to be awarded among 16 teams, S16 = ₹8000 and
the prize money awarded to the last place team i.e. a16 = ₹275
As, the award increases by the same amount for successive finishing places.
So, the prize money are in A.P.
Let the prize money awarded to the first team be a.
Now,

\[S_{16} = 8000\]

\[ \Rightarrow \frac{16}{2}\left[ a + a_{16} \right] = 8000\]

\[ \Rightarrow 8\left[ a + 275 \right] = 8000\]

\[ \Rightarrow a + 275 = \frac{8000}{8}\]

\[ \Rightarrow a = 1000 - 275\]

\[ \therefore a = 725\]

So, the amount which the first place team will recieve is ₹725.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.7 | Q 17 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 4, 9, 14, ... is 254?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


How many numbers of two digit are divisible by 3?


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of first n natural numbers.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×