हिंदी

Three Numbers Are in A.P. If the Sum of These Numbers Be 27 and the Product 648, Find the Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.

उत्तर

\[\text { Let the three numbers be } a - d, a, a + d . \]

\[\text {Their sum } = 27\]

\[ \Rightarrow a - d + a + a + d = 27\]

\[ \Rightarrow 3a = 27\]

\[ \Rightarrow a = 9 . . . (i)\]

\[\text { Product } = (a - d)a(a + d) = 648\]

\[ \Rightarrow a( a^2 - d^2 ) = 648\]

\[ \Rightarrow 9(81 - d^2 ) = 648\]

\[ \Rightarrow (81 - d^2 ) = 72\]

\[ \Rightarrow d^2 = 9\]

\[ \Rightarrow d = \pm 3\]

\[\text { When a = 9, d = 3, we have:} \]

\[6, 9, 12\]

\[\text { When a = 9, d = - 3, we have: } \]

\[12, 9, 6\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 2 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Is 302 a term of the A.P. 3, 8, 13, ...?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of all even integers between 101 and 999.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×